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Abstract An important issue in text mining is how to make use of multiple pieces knowl-
edge discovered to improve future decisions. In this paper, we propose a new approach to
combining multiple sets of rules for text categorization using Dempster’s rule of combina-
tion. We develop a boosting-like technique for generating multiple sets of rules based on
rough set theory and model classification decisions from multiple sets of rules as pieces of
evidence which can be combined by Dempster’s rule of combination. We apply these meth-
ods to 10 of the 20-newsgroups—a benchmark data collection (Baker and McCallum 1998),
individually and in combination. Our experimental results show that the performance of the
best combination of the multiple sets of rules on the 10 groups of the benchmark data is
statistically significant and better than that of the best single set of rules. The comparative
analysis between the Dempster–Shafer and the majority voting (MV) methods along with an
overfitting study confirm the advantage and the robustness of our approach.

Keywords Rule induction · Text mining · Rough set · Dempster’s rule of combination

1 Introduction

For the problem of text mining, in general, and classification, in particular, different machine
learning methods obtain different degrees of success, but none of them is totally perfect,
and usually they are not good enough for real-world applications. Therefore it is desirable
to develop an effective methodology for taking advantage of different learning methods by
combining their decisions, so that more precise decisions can be achieved. In this research,
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we investigate a novel approach for combining multiple decisions inferred from multiple sets
of rules by using Dempster’s rule of combination. The advantage of our approach is its ability
to combine multiple sets of rules into a highly accurate classification rule by modelling the
accumulation of evidence as boosting methods do (Freund and Schapire 1996).

Boosting learning techniques have been developed by Freund and Schapire (1996). These
techniques work by repeatedly running a given weak learning algorithm on various distri-
butions over training data, and then combining the classifiers produced by the weak leaner
into a single composite classifier. The algorithms built on boosting techniques have attractive
theoretical properties, and have also been shown to perform well experimentally on more
standard machine learning tasks (Quinlan 1996; Freund and Schapire 1997). Although such
methods produce complex solutions, they have the advantage that the extra computation they
require is known in advance—if T classifiers are generated by a learning algorithm, then the
boosted solutions require T times the computational effort of the corresponding algorithm
(Quinlan 1996; Weiss and Indurkhya 2000).

Several derivatives based on boosting techniques have been developed in recent years. In
Friedman et al. (1998), a method for decomposing a decision tree of larger size into a number
of very small trees in terms of truncated tree induction was developed. Their work shows
that a single decision tree is often dramatically outperformed by voting based on multiple
smaller decision trees. In Cohen and Singer (1999), boosting techniques are used in a system
called SLIPPER to generate a set of weighted rules. This approach generally outperforms
standard rule induction techniques and these rules also maintain clarity of explanation. In
Schapire and Singer (2000) and Nardiello et al. (2003), the authors report their work on text
categorization using boosting techniques, respectively. Of particular interest to our work is
the approach developed by Weiss and Indurkhya (2000), where a lightweight rule induction
(LRI) method is used to generate compact Disjunctive Normal Form (DNF) decision rules.
For each class, there are an equal number of the corresponding unweighted rules. An unseen
instance is classified by all the rules and the instance is assigned to the class with the most
satisfied rules.

Rough Set theory is a mathematical tool for dealing with vagueness and uncertainty
(Pawlak 1991), and it is increasingly being applied to various data or text mining tasks
(Guang and Bell 1998; Chouchoulas and Shen 2001; Bi et al. 2004b). In our work we develop
a rough sets-based learning algorithm for generating multiple sets of weighted rules on the
basis of work described in (Chouchoulas and Shen 2001; Grzymala-Busse 1992), instead
of using conventional boosting techniques. The main idea of our algorithm is to evaluate
dependency between the attributes of a data set. This dependency between different combi-
nations of attributes is be analysed, and the subsets of attributes with the same dependency
as that of the whole set of attributes are generated. Each of the subsets could have the same
discriminant ability as the entire set of attributes does. The subsets of attributes generated in
this way are called reducts, and they are in turn used to construct multiple sets of weighted
rules, each of which plays the same role as a classifier in classification.

There are some recent research activities concerning how to combine classification deci-
sions and what is best way to combine classification decisions (Opitz and Maclin 1999;
Whiteaker and Kuncheva 2003; Tumer and Ghosh 2002; Kittler 1998). Although similar
ideas to ours have been mentioned in (Xu Krzyzak and Suen 1992; Denoeux 2000), they
have not been systematically investigated the method and techniques for incorporating the
Dempster—Shafer (DS) theory of evidence into combining decisions of multiple sets of
rules, which are, in particular, generated by rough sets-based methods. The distinguishing
aspect of our approach is we have developed a method for modelling classification decisions
from each set of rules as a piece of evidence where rule strengths are degrees of belief that
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indicate how likely it is that new instances belong to classes. This provides an effective way to
improve decisions making in classification by accumulating more pieces of evidence derived
from discovered rules (knowledge).

Various experiments have been conducted on the 10 out of 20 newsgroups of the bench-
mark data (Baker and McCallum 1998) to evaluate our rough sets-based algorithm and the
DS method. In order for our experiments to faithfully reflect the performance of combin-
ing multiple sets of rules, we randomly partition the benchmark data set into a training set,
a validation set and a testing set with different sizes to avoid likely overfitting that may be
caused in experiments. The validation set is used for optimizing the threshold α and selecting
different sets of rules for combinations and the test set is used to evaluate the performance
of our algorithms.

Our experimental results show that the estimated performance of the best combination of
the multiple sets of rules using our DS method is consistently better that of the best single set
of rules. A t-test is utilized to show that this performance difference is statistically significant
at the 0.05 level. A comparative analysis between the DS and the MV methods is also carried
out, demonstrating the advantage of DS over MV in combining multiple sets of rules. To
examine the robustness of our method, we also analyze the generalization performance of
the best single set of rules and the best combined sets of rules on the validation and testing
sets, and we have found that DS has more overfitting than MV.

2 Rough Sets for rule generation

Inductive learning can be loosely defined as learning general rules from specific instances
(Mitchell 1999). In other words, induction learning can be seen as a process of synthesizing
mappings from a sample space consisting of individual instances. The result often is to reduce
the space, leading to a new smaller space containing a set of representative instances, which
serves the same role as the original one. To develop the rough sets-based learning algorithm,
we introduce several essential concepts below (Pawlak 1991; Guang and Bell 1998).

2.1 Definitions and notation

In rough sets, data objects or instances are organized into decision systems. A decision
system can defined as S = 〈U, A, V, f 〉, where U = {u1, . . . , u|U |} is a collection of
objects, A = {a1, . . . , a|A|} is a set of attributes, V = {Va1,...,Va|A|} is a set of attribute
values, in which Vai = {Vai1 , . . . , Vaik } is the domain of attribute ai , and Vai j is a categorical
value (1 < k ≤ |Vai |). We define f as a function over U , A, and V , and f (u, a): U×A→ Va

assigns particular values from the domain of attributes to instances such that f (u, a) ∈ Va ,
for a ∈ A and u ∈ U . Attribute A is further divided into two parts—the condition attribute
W and decision attributes H such that A = W ∪ H and W ∩ H = φ.

Table 1 presents a decision system, containing information about patients’ symptoms and
the disease from which patients suffer. The symptoms and the disease name correspond to
the attribute names. Each row corresponds to an individual patient’s symptoms and a possible
disease in terms of object and relationships between symptoms and disease are derived from
doctors’ subjective judgement, historical records of patients, and so forth.

Definition 1 With an attribute a ∈ A, two instances u, v ∈ U are defined as an equivalence
relation over U if and only if f (u, a) = f (v, a), denoted by τ .
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Table 1 A decision system (Pawlak 1991), where he = Headache, m = Muscle-pain, t = Temperature, h = Flu,
y = yes, n = no, hi = high, vhi = very high)

U/A he m t ∪ h

1 n y hi y
2 y n hi y
3 y y vhi y
4 n y n n
5 y n hi n
6 n y vhi y

Definition 2 With an equivalence relation τ associated with the set of attributes, a parti-
tion operation on a decision system under τA is defined as U/τA (U/A for short), where
U/A = {X1, . . ., Xn}, and each Xi is called an equivalence class, such that for any two
instances u and v, if u, v ∈ Xi and a ∈ A, then f (u, a) = f (v, a).

Definition 3 Given a subset of attributes B ⊆ A, if there is Q ⊆ B, s.t. U/τB = U/τQ and
Q is minimal among all subsets of B, then Q is defined as a reduct of B. The component
attributes of a reduct are significant so that none of them can be omitted. Notice that more
than one reduct of B may exist.

Definition 4 Suppose the decision attribute H is a singleton, i.e. H = {h}, and let U/τd =
{X1, . . ., Xk} be a partition over U with respect to h, for each subset X ⊆ U/τh and a subset
of condition attributes B ⊆ W , we associate two subsets with X as follows:

B X = ∪{Y ∈ U/B|Y ⊆ X} (1)

B X = ∪{Y ∈ U/B|Y ∩ X 	= φ} (2)

where B X and B X are called the lower and upper approximations, respectively, and the
difference between B X and B X is called boundary, denoted by BNB . To express the quan-
titative relationship between a subset of condition attributes B ⊆ C and a decision attribute
h, we define a measure, the dependency degree, denoted by γB(X) below:

γB(H) =
∑

X∈U/H

|B X |
|U | (3)

Definition 5 A decision rule is the logical expression of cause-effect relation which is
composed of the antecedent and the consequent in the following form:

IF (a1 = v1) ∧ (a2 = v2) ∧... ∧(a|A−1| = v|V |) THEN hi |stg

where ai ∈ A is a attribute, vi ∈ Vai is an attribute value of ai and hi ∈ Vh (or hi ∈ 2V h) is
a decision attribute value, and stg is a degree of belief for possible conclusions which lies in
a range [0, 1].

By applying these concepts to Table 1 as an example, we have obtained a reduct
B = {m, t}, the corresponding approximations B X = {1, 3, 4, 6}, B X = {1, 2, 3, 4, 5, 6}
and BNB = {2, 5}, and γB(H) = 4/6.
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R1:

r11 IF (he = no) ∧ (t = hi) THEN h = y | 1/6 

r12 IF (he = y) ∧ (t = vhi) THEN h = y | 1/6 

r13 IF (he = no) ∧ (t = vhi) THEN h = y | 1/6 

r14 IF (he = no) ∧ (t = n) THEN h= n | 1/6 

r15 IF (he =y) ∧ (t = hi) THEN h = {y, n} | 2/6 

R2:

r21 IF (m = y) ∧ (t = hi) THEN h = y | 1/6 

r22 IF (m = y ) ∧ (t = vhi) THEN h = y | 2/6 

r23 IF (m = y) ∧ (t = n) THEN h = n | 1/6 

r24 IF (m = n) ∧ (t = hi) THEN h = {y, n} | 2/6

Fig. 1 Two sets of rules constructed from two reducts {m, t} and {h, t}

2.2 Rule generation based on rough sets

The rough set-based approach to inductive learning consists of two steps. The first step is
to find multiple single covering solutions for all training instances held in a decision table.
Specifically, given a set of condition attributes A and a subset B ⊆ A, a covering attribute set
is found directly by computing its dependency degree γB(H). The direct solution involves
adding an attribute at a time, removing the attribute covered by the attribute set, and then the
process is repeated until γB(H) is equal (or approximately equal) to γA(H). At the end of
the induction of conjunctive attributes, more than one covering set—reduct—will be found.

The second step is to transform multiple sets of reducts to the corresponding sets of rules
as seen in Definition 5. In general, rules can be generated from three different regions, i.e.
lower and upper approximations, and boundary. In our work we consider rules to be generated
from the lower approximation and boundary. For the former case, formally, let h be decision
attribute, Vh = {h1, . . ., hk} be decision attribute values and U/h = {X1, . . ., Xk} be a set
of partitions with respect to the decision attribute h, and B X be the lower approximation,
then each B Xi consists of a number of equivalent classes, denoted by B Xi = Y1 ∪ . . .∪ Yq ,
where Y j = {u| f (v, B) = f (u, B), v, u ∈ B Xi }. Thus a rule can be represented in the form
of IF (B = f (u, B)) THEN hi |stgB(Y j ), where u ∈ Y j , hi ∈ Vh , and stgB(Y j ) is given as
follows:

stgB(Y j ) = |Y j |
|U | (1 ≤ j ≤ k) (4)

For the later case, by using a similar way to the above, we include a set value of a decision
attribute as the rule conclusion that represents undeterministic status about a proposition.

Figure 1 presents two sets of rules R1 and R2 which are generated from two reducts {m, t}
and {he, t} obtained from Table 1. Here we denote multiple sets of rules by
R = {R1, R2, . . ., R|R|}, where Ri = {ri1, ri2,...,ri |Ri |}, 1 ≤ i ≤ |R|, and each ri j is called
a intrinsic rule. The relationship between two sets of rules Ri and R j (i 	= j) is in DNF
(disjunctive normal form) as are the rules within Ri (Weiss and Indurkhya 2000).

From Fig. 1, it is noted that the DNF model does not require mutual exclusivity of rules
within a set of intrinsic rules and/or between different sets of intrinsic rules. The DNF used
in this context differs from the conventional way in which only one of the rules is used to
determine the class for a given instance. Instead, all rules will be evaluated for a new instance,
and all the trigged rules will be used together to classify it. Rules for either the same classes
or different classes can potentially be satisfied simultaneously. In the former case, conflicting
conclusions occur. One solution to this is to rank all the classes according to the strengths of
confidence derived from the triggered rules. The class with the highest strength is taken as the
final conclusion (Apte et al. 1994). Another solution is based on the majority voting principle,
in which the conflicting conclusions are resolved by identifying the most frequently satisfied
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rules (Weiss and Indurkhya 2000). In contrast, our approach makes use of the rule strengths
aggregated by using Dempster’s rule of combination to reconcile conflicting conclusions.

3 Dempster–Shafer theory of evidence

The Dempster–Shafer theory of evidence allows us to combine pieces of evidence derived
from subsets of the frame of discernment that consists of a number of exhaustive and mutu-
ally exclusive propositions (Shafer 1976). These propositions form a universal set �. For any
subset H = {h1, . . ., h|H |} ⊆ �, hi represents a proposition, called the focal element. When
H is a one element subset, it is called a singleton. All the subsets of � constitute a powerset
2�, i.e. H ⊆ �, if and only if H ∈ 2�. The DS theory uses a numeric value in the range
[0, 1] to represent the strength of evidence supporting a subset H ⊆ � based on a given piece
of evidence, denoted by m(H), called the mass function, and uses a sum of the strengths for
all subsets of H to indicate the strength of belief about a proposition H , denoted by bel(H),
often called the belief function. Notice that bel(H) is equal to m(H) if the subset H is a
singleton. The formal definition for Dempster’s combination rule is given below:

Definition 6 Let m1 and m2 be two mass functions on the frame of discernment �, and for
any subset H ⊆ �, the orthogonal sum ⊕ of two mass functions on H is defined as:

(m1 ⊕ m2)(H) =
∑

X∩Y=H
m1(X)∗m2(Y )

1− ∑
X∩Y=φ

m1(X)∗m2(Y )
(5)

The orthogonal sum allows two mass functions to be combined into a third mass function,
which pools pieces of evidence to support propositions of interest.

4 Modelling rule decisions as evidence

In Bi (2004), we have provided the theoretical justification about the correspondence between
a set of intrinsic rules and evidential functions. Sophisticated theoretical results of relation-
ships between rough set theory and evidence theory are also documented in (Yao and Lingras
1998; Skowron and Grzymala-Busse 1994). Instead of studying these theoretical properties,
here we focus our interests on developing a method for modelling decisions of multiple sets
of rules as pieces of evidence and empirically assessing its validity and applicability. In this
section, we start by briefly discussing a general form that a text categorization algorithm
based on Rough Sets may have, and then describe our method for modelling the decisions of
multiple sets of rules.

4.1 Learning approximations for text categorization

Given a collection of training documents, which is modelled as a decision table, the task
of inductive learning for text categorization is to discover rules to assign documents into
predefined categories. Formally, let D = {d1, . . . , d|D|} be a collection of documents, where
di = {wi1, . . . , win}, and C = {c1, . . . , c|C |} be a set of predefined categories, then the
classification task of assigning documents into predefined categories can be regarded as a
mapping function which maps a boolean value to each pair 〈d , c〉 ∈ D × C . If a value of 1
is assigned to 〈d , c〉, then that means a decision has been made that document d belongs to
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category c, whereas a value of 0 indicates a decision not to classify document d into cate-
gory c. Therefore, inductive learning in this context aims at constructing an approximation
function R for the rules making R : D × C → {0, 1}, where R is called the classification
model, also referred to as a set of intrinsic rules.

Due to inductive learning being an approximating process, moving from the specific to the
general, function R may not guarantee that the propositional expression R : D×C → {0, 1}
is always true, but may instead be partially true. In the other words, there is uncertainty about
determining if a document belongs to a particular category or categories. We can therefore
define an alternative function R : D→ C ×[0, 1], where numeric values between 0 and 1 is
expressed by stg, indicating how likely it is that a given document d belongs to category c.
Without loss of generality, we denote the above process by the notation given in Definition 5,
i.e. IF R(d) THEN h|stg.

4.2 Mass function definition

Having given a general form of the decision rules for text categorization, we now describe
how to model the outputs (conclusions) of intrinsic rules to pieces of evidence in order to
formulate an application-specific mass function. Let C = {c1, c2, . . ., c|C |} be a frame of dis-
cernment, and let Ri = {ri1, ri2,...,ri |Ri |} be a set of intrinsic rules. Given a test document d ,
threshold α and matching function µ that determines the matching degrees between the doc-
ument and rule conditions (antecedents), if q rules are triggered, i.e. ri, j+1, ri, j+2, . . . , ri, j+q

where α ≤ µri, j+1(d), . . . , α ≤ µri, j+q (d), and 1 ≤ j, q ≤ |Ri |, then q conclusions
are inferred from Ri . Formally, we can represent this inference process by the expres-
sion of ri, j+1(d)→ h1|stg j+1, ri, j+2(d)→ h2|stg j+2, . . ., ri, j+q(d)→ hq |stg j+q , where
hs ∈ 2C

, 1 ≤ s ≤ q , and stg j+s are rule strengths expressing the extent of which documents
belong to the respective categories in terms of degrees of confidence. At the end of the infer-
ence process, a set of conclusions will be obtained, and denoted by H ′ = {h1, . . ., hq}, where
H ′ ⊆ 2C .

For the rules triggered with respect to q , there are two situations of either q = |Ri | or
q < |Ri |. When q = |Ri |, this means all the rules in Ri are completely satisfied with a
given document, resulting in stg j+1 + stg j+2 + · · · + stg j+q = 1. These conclusions can be
directly used to define a mass function. When q < |Ri |, stg j+1+ stg j+2+· · ·+ stg j+q < 1,
Demspter’s rule cannot be directly applied. To make use of Demspter’s rule of combination
appropriately to pool all the conclusions to draw a final classification decision, it is essential
to develop a method for normalizing the outcomes of rules. For convenience later, we define
a function � such that �(h j ) = stgi+ j .

The normalization process starts by finding the duplicate conclusions within H ′, and then
the corresponding rule strengths are added up, resulting in a new set of the conclusions.
Formally, for any two h j , hi+s ∈ H ′, if h j = hs, j 	= s, then �(h j ) ← �(h j ) +�(hs)

and hs is eliminated. After this processing, a set of conclusions is reconstructed, denoted
by H = {h1, h2, . . . , h|H |}, where H ⊆ 2C . The definition of a mass function for H is as
follows:

Definition 7 A mass function is defined as m: H → [0, 1]. There are four different situations
based on the inclusive relations between C and H .
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(1) if C ∈ H , then we define a mass function as follows:

m(hi ) = �(hi )

|H |∑
j=1

�(h j )

(1 ≤ i ≤ |H |) (6)

(2) if C /∈ H , then H ← H ∪ C and we define a mass function as follows:

m(hi ) = �(hi )(1 ≤ i ≤ |H | − 1) (7)

m(C) = 1−
|H |−1∑

i=1

�(hi ) (8)

(3) if H = C and �(hi ) 	= 0 for any element hi ∈ H(1 ≤ i ≤ |H |), then we define:

m(hi ) = �(hi )(1 ≤ i ≤ |H |) (9)

(4) if H = C , and �(hi ) = 0 for any element hi ∈ H(1 ≤ i ≤ |H |) then we define:
m(H) = 1.

We have elsewhere provided a proof that the rule strength satisfies the condition of a mass
function (Bi 2004). However, as in the first case above, some conclusions cannot be inferred
from a specific piece of evidence, so these conclusions remain unspecified. Thus it is nec-
essary to redistribute mass among known conclusions. Such redistribution for the unknown
state of hypotheses could be valuable in the coherent modelling and basic assignment of
probabilities to potential hypotheses and in making decisions over an incomplete frame of
discernment.

The second case means that the added conclusion C represents our ignorance about the
unknown state of hypotheses in inference processes. It absorbs the unassigned portion of the
belief after the commitment to H . The addition of ignorance about the likelihood of hypoth-
eses provides us with the information we need for the inference process. This also means
that the system does not require complete knowledge about all potential hypotheses since
we represent an implicit set of unmodelled hypotheses by including an additional unknown
state, C .

For the third case, the conclusions obtained are exactly the same as these integral hypoth-
eses within C , through we directly replace strengths with a mass function.

The fourth case means that the conclusion obtained does not have knowledge about any
individual hypotheses within the frame of discernment C , and its complement is an empty
element. In this situation, we reassign its degree of total belief as 1.0.

5 The combination methods

In this work, we implement two combination methods: the majority voting method and the
Demspter-Shafer method. For majority voting, each set of rules is equally treated as a vote.
However when an even number of rule sets participate voting, a conflict decision may occur,
resulting in a difficult situation in making the final decision. To cope with such a situation,
we take the performance of rulesets into account, giving different weights to each vote based
on their performance. More details about the majority voting method used here can be found
in (Xu et al. 1992). The rest of the section is focused on how Dempster’s rule can be used to
combine multiple sets of rules.
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Fig. 2 The process of combining classification outputs represented by mass functions which are obtained
from two sets of rules

Suppose we are given multiple sets of rules R = {R1, R2, . . . , R|R|} and a set of categories
C = {c1, c2, . . . , c|C |}, for a new document d , the decisions on which document d belongs
to categories will be made by R1, R2, . . . , R|R|, resulting in Ri (d) = mi (Hi ). If only one of
the sets of rules is triggered, such as R1(d) = H1, then H1 will be ranked in decreasing order
on the basis of rule strengths. If the top choice of H1 is a singleton, it will be assigned to the
new document, otherwise lower ranked decisions will be considered for the further selection.
When K sets of rules are triggered, after the normalization by using the method in Definition
7, multiple decisions H1, H2,..., HK are obtained, where Hi = {hi1, hi2, . . . , h|Hi |}, Hi ⊆ 2C

and the corresponding mass function is mi (Hi ) = {mi (hi1), mi (hi2), . . . , mi (hi |Hi |)}which
is further organized into a triplet structure as given in Definition 8. As a consequence of this
process, K pieces of evidence will be obtained, we can combine them to decide the final
decisions by using Dempster’s rule of combination as follows:

m1 ⊕ m2 ⊕ . . .⊕ mK (10)

By using Eq. 10 we can obtain a set of classification decisions to which documents should
belong along with the corresponding belief values, we define a decision rule for determining
a final category in general cases below:

φ(x) = h = argmax({bel(h)|h ⊆ C}) (11)

Figure 2 illustrates the process of combining the outputs of two sets of intrinsic rules
represented by triplets given K = 2 and n testing documents. Outputs of different sets of
rules on the same testing document can be combined using the orthogonal sum. Each of the
combined results will be ranked and the final decision is made by Eq. 11. Notice that we
are only interested in the case where hi j is a singleton, i.e. a single category, thus we have
m(hi j ) = bel(hi j ) as stated Sect. 3.

6 Experiments and evaluation

In this section we describe the experiments which have been performed to evaluate our
methods described in the previous sections. In the experiments, we used a single holdout
evaluation since the computation complexity of calculating reducts is exponential in terms
of both time and storage and the current version of the Rough Sets-based algorithm does

123



200 Y. Bi et al.

not have the ability to perform sequential calculations of reducts in the multiple folds of a
cross-validation method.

For our experiments, we have chosen a public benchmark dataset, often referred to as
20-newsgroup. It consists of 20 categories, and each category has 1,000 documents (Usenet
articles), so the dataset contains 20,000 documents in total. Except for a small fraction of the
articles (4%), each article belongs to exactly one category (Baker and McCallum 1998).

In this work, we have randomly selected 10 categories of documents to form an experimen-
tal data set, containing 10,000 documents in total, to reduce the computational requirements.
We also randomly divide the data set into a training set consisting of 63% of the dataset, a
validation set consisting of 27% of the data set, and a testing set consisting of 10% of the data
set as suggested by Aphinyanaphongs and Aliferis (2003). These three data sets are mutually
exclusive and independent of one other. The role of each set is given as follows:

• The training set is used to compute reducts (attribute subsets) and construct sets of rules
• The validation set is used to evaluate the classification performance of the sets of rules

and determine how many and which sets of rules should be selected for the performance
evaluation of combining the outputs of multiple sets of rules, and choose an optimal
threshold α that is used to determine which rule would be triggered.

• The testing set is used to evaluate the performance of the D-S algorithm and the majority
voting method using the selected rule sets from the previous step.

The idea of dividing the data set into a validation set and a testing set is to fairly select rule
sets for combinations and optimise the model parameters without using the testing set, as
indicated in (Baker and McCallum 1998; Aphinyanaphongs and Aliferis 2003), in order to
avoid a high likelihood of the overfitting of the classification models over the testing set.

6.1 Evaluation measure

In our analysis, we use evaluation measures of precision (p) and recall (r), and combined
measure F1 defined as F1 = 2pr/(p+r), which are widely used in information retrieval and
text categorization (van Rijsbergen 1979). In particular, we base our performance analyses
on the macroaverage F1 (calculated for each experiment as the average F1 measure on all
categories) (Yang 1999).

6.2 The experimental results

For our experiments, we use information gain to select about 270 keywords (features) after
removing stopwords and applying stemming. The selected number of features is only based
on the ability of the Rough Sets algorithm in handling the dimensionality of features, rather
than an optimum number of features. By using the rough sets-based algorithm, ten reducts
have been selected and ten corresponding sets of intrinsic rules have been constructed. We
denote these sets of rules by R0, R1, . . ., R9. In our method, there are two parameters that
may affect the estimation of classification accuracy: (a) threshold values α determining if a
rule will be triggered, and (b) the number of sets of intrinsic rules to be combined.

Let us first see how a threshold value is chosen. Based on the empirical study, we define
eight threshold values: 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 1.00, and then randomly
pick three sets of rules from the ten sets of rules to evaluate the performance of these rulesets
against these threshold values on the validation set to determine an optimal threshold α. The
estimated classification accuracy of these rule sets on each threshold point is averaged, and
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Fig. 3 The performance of different sets of intrinsic rules on the validation set (note Ri is the same as Ri
throughout the rest of sections)

then the threshold which corresponds to the highest classification accuracy is chosen, i.e.
0.90 above. This threshold is thus used throughout all the experiments below.

It is noted that the threshold of 0.90 is not absolute one; it may vary when different sets
of rules are used for choosing a threshold. However, it is not easy and may be not possible to
choose a universal threshold which ensures all sets of rules would achieve the best classifi-
cation accuracy simultaneously. Whatever a threshold value is chosen, the trade-off between
the performance of one set of rules and multiple sets of rules must be made.

Prior to the experiments to evaluate the effectiveness of combinations of different number
of sets of rules, we first remove the rules which have low strengths and do not contribute the
performance increase, and then we evaluate the performance of individual rule sets based
on a threshold of 0.90. Figure 3 presents the estimated classification accuracy of 10 sets of
intrinsic rules on the validation data set. It can be seen that ruleset R4 achieves the highest
classification accuracy.

To examine the performance of the resulting combinations of different rule sets in clas-
sification in terms of the combinations of the sets of rules, we first rank these rulesets in
descending order based on their estimates of classification accuracy, and then divide the 10
sets of rules into two groups to see the effectiveness of the combinations of the rulesets since
the combinations of lower performance of rules may not bring any benefits to the combined
performance of rulesets (Opitz and Maclin 1999). If we use 70% classification accuracy as a
cut-off point, then the first group consists of R0, R1, R4, R5, R6, R8, and the second group
includes R2, R3, R7, R9.

For the first group of rulesets, we first take R4 with the best classification accuracy,
and then combine it with R0, R1, R5, R6, R8 using Demspter’s rule of combination. The
combined results are denoted by DS40, DS41, DS45, DS46, DS48. Following the similar pro-
cess, we take R5 that is the second best rule set to combine R0, R1, R6, R8 using DS. These
combined results are ranked and the best combined ruleset DS45 is chosen for the next round
of combination. It is combined with R0, and then combined with R6, and so forth, resulting in
a ranked list of the result combinations DS450, DS4506, DS45061, and DS450618. As illustrated
in Fig. 4, their classification accuracies have dropped with the addition of more rulesets and
there is no indication that the combinations of more than two rulesets can outperform the
combined ruleset DS45. Therefore, from these combinations of the rulesets, it is observed that
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Fig. 4 The performance of the combined rulesets from the first group on the validation set (note DSi is the
same as DSi throughout the rest of sections)
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Fig. 5 The performance of the combined rulesets from the second group on the validation set

the combination of the best ruleset with the second best ruleset provides the best combination
in achieving the biggest predictive performance.

For the second group of rulesets, we use a similar process to that for the first group to
examine the performance of combined rulesets. We first take R2 to combine with R7, R3, R9

using DS. The performance of the combined rulesets is shown in Fig. 5. Following the same
principle as above, we combine DS29 with R3, R7, and then combine DS297 with R3. As
can be seen, the performance of these combinations drops on average relative to DS27, DS23

and DS29. However, when DS297 is combined with R3, the performance increases again. A
similar pattern to the first group of rulesets is observed for this group. To analyze the effec-
tiveness of adding more rulesets, we take the best performing R4, the second and third best
performing R5 and R0 from the first group to combine with DS2973. The performances of
DS29734, DS297345 and DS2973450 are not better than that of DS29, which is a similar pattern
to the first group of rulesets.

According to the figures as seen in Figs. 4 and 5, in both the cases, it is seen that the
best combination of rulesets is composed of just two sets of rules, one with the highest
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Fig. 6 Performance of the combined rulesets using MV on the validation set

classification accuracy and the other with the second highest accuracy. However, as seen in
our previous study (Bi et al. 2004a), the combination of the best and the second best sets
of rules may not always be the best combination. The performance of combined rulesets is
actually dependent on the closeness of two sets of rules as described in (Bi 2004).

To perform a comparative analysis with the majority voting method, we use the similar
procedure to combine outputs obtained from different rule sets. We first rank the ten rulesets
based on their performance on the validation set in descending order, i.e. R4, R5, R0, . . . , R9,
and then combine them using the majority voting algorithm, and the combined results are
denoted by MV45, MV450, and so on. Specifically, we first take R4 with the best performance,
and then combine it with R5, and R0. The combined result MV450 is combined with R6, and
this combination process is repeated until all the rulesets are combined. At the end of the
process, a list of the combined rulesets MV450, MV4506, MV45061, MV450618, MV4506182 and
MV45061827 are obtained, as illustrated in Fig. 6.

From Fig. 6, it is observed that the performance of the combined rulesets decreases with
more rulesets being combined, and the best combination is the combination of the top three
rulesets R4, R5, and R0. Figure 7 presents a performance comparison among the best indi-
vidual ruleset, the best combined ruleset obtained by the DS algorithm and the best combined
ruleset obtained by MV on the validation set. It can be seen that in comparison to the best
individual ruleset R4(77.44%), the estimated classification accuracy of DS45 can achieve
79.62%, which is 2.18% better than R4, and MV450 can achieve 78.04%, which is 0.6%
better than R4.

6.3 Generalization analysis

In order for our experiments to faithfully reflect the combined performance of multiple sets of
rules, we take the best individual ruleset R4, and the best combined rulesets DS45 and MV450
based on the validation set, and evaluate their generalization performance on the testing set
further. As illustrated in Fig. 8, the estimated accuracy of R4 is 76.33%, and the estimated
accuracy of DS45 is 78.10%, so it is 1.77% better than R4, and the estimate of the MV450
accuracy is 76.89%, which is 0.56% better than R4. Based on these difference of classification
accuracies, we perform a paired t-test on the ten pairs of estimated classification accuracies
for ten document categories produced by R4 and DS45, and a paired t-test on the ten pairs of
classification accuracies for ten document categories produced by R4 and MV450, to assess if
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Fig. 7 The performance of the best individual ruleset and the best combined rulesets by using DS and MV
on the validation set
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Fig. 8 The performance of the best individual ruleset and the best combined rulesets by using DS and MV
on the testing set

the best combined rulesets outperforms the best individual set of rules. The one-tailed t-test
result concludes that the estimated accuracy difference between R4 and DS45 is statistically
significant at the 0.05 significance level. However the difference between R4 and MV450 is
not.

To analyze overfitting of the best single ruleset and the best combined ruleset using DS
and MV, we make the performance comparison between the best individual and the best
combined ruleset on the validation and testing sets. Putting the two experimental results
in Figs. 7 and 8 together in Fig. 9, as we can see from the figure, the difference between
the validation set and the testing set accuracies of R4 is 1.1%, the performance difference
between the validation set and the testing set of DS45 is 1.52%, and the difference between
the validation set and the testing set accuracies of MV450 is 1.15%. The over-fitting rate in
this experiment is 1.26% on average. It is noted that the Dempster-Shafer method shows
more over-fitting than the majority voting method.
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Fig. 9 Overfitting for the DS and MV methods on the validation set accuracy and the testing set accuracy

6.4 Discussion

In Figs. 8 and 9, our experimental results have shown that the performance of the DS algorithm
in combining outputs of rulesets is better that of the majority voting method. In this section,
we provide a comparison and discussion in an attempt to interpret why DS outperforms MV.

Majority voting is a simple decision making method that has been widely applied to aggre-
gate classification decisions in multiple classification systems (Whiteaker and Kuncheva
2003; Xu et al. 1992). It treats each component classifier as a vote equally. However in this
research we have taken their performance into account when a decision conflict occurs when
combining an even number of classifiers. Both theoretical and empirical research has shown
that more accurate performance can be achieved by combining classifiers since individual
classifiers may make errors in different parts of the data space. This concept has been termed
diversity (Whiteaker and Kuncheva 2003; Tumer and Ghosh 2002; Kittler et al. 1998; Xu et
al. 1992). Whitaker and Kuncheva (2003) carried out an empirical study on the relationship
between majority vote accuracy and diversity in Bagging and Boosting. This study is based
on an enumerative example, which consists of three classifiers with the same classification
accuracy 60%, and 28 combinations of the classifiers in classifying 10 instances. The results
show that there is a situation where the combination of the three classifiers by using the
majority voting method can produce 90% classification accuracy under some conditions,
resulting in a 30% improvement on the individual classifiers. However in most situations, the
combined three classifiers using majority voting outperform the individual classifiers with
10–20% increase or even less. In fact majority voting might not guarantee that the combi-
nations of different classifiers can always do better than the best individual classifier. Those
experimental results indicate that there is no clear relationship between the ten diversity
measures used and the majority voting accuracy in that particular experimental setting.

Figure 10 presents our experimental results obtained by MV on the testing set, depict-
ing the estimated classification accuracy of rulesets R0, R4, R5 and their combination on
the ten document categories. The performance of the combined rulesets has improved with
respective to the best individual R4. It has been observed that when there is a big difference
between any pair of rulesets and an individual ruleset, the performance of their combinations
can be improved, for example, on categories C5 and C9, but they cannot be better than the
best individual. However, the performances on categories C3 and C6 may suggest that when
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Fig. 10 The performance of individual ruleset R0, R4 and R5vz the combined reduct MV045 on the testing
set

there is certain amount of difference between any pair of rulesets and an individual ruleset,
the predictive accuracy of the combined ruleset is better than that of individual rulesets. This
certain amount of difference could be explained by the concept of diversity.

Dempster’s rule of combination is built on the more sophisticated evidence theory. The
key aspect of this method is how to transform different types of measures or scores of dif-
ferent classifiers into evidence. There are underlying differences between Dempster’s rule
of combination and the majority voting method in modelling practical applications. Look-
ing at the calculation process of the core operation—orthogonal sum—in the DS theory of
evidence, it is not only able to accumulate different pieces of evidence obtained from dif-
ferent sources (crossing categories), but it also takes account maximal agreements among
the pieces of evidence. Importantly, the DS theory of evidence also provides an explicit
representation for unknown or nondeterministic states of hypotheses in terms of ignorance
which has been used to represent uncertainty in assigning documents into pre-defined cate-
gories. Thus these theoretical properties represent a significant improvement on the majority
voting method. However, sophisticated theoretical complexity does not necessarily translate
improved implementation of practical applications.

Figure 11 presents a graph describing the estimated classification accuracy of rulesets
R4 and R5, and their combination on the ten document categories for the testing set. It can
be observed that with the exception of categories C5 and C9, their classification accuracy
is better that of the individuals on all the other categories. The performance variation on
categories C5 and C9 may suggest that the predictive accuracy of the combined ruleset is not
better than that of the two individual rulesets when there is a big gap between their predictive
accuracies. In comparison with Fig. 10, there is similar performance behaviour on category
C5, however there is not much similarity on category C9. From these results, it cannot be
seen that there is a correlation between DS and MV in improving the performance of sets of
rules in the combinations of multiple sets of rules.

In general, it is a very difficult task to understand why the combined classifier outperforms
an individual classifier under some conditions (Lam 2002). In an effort to provide an insight
into this issue, Kuncheva (2001) proposed an empirical method for measuring the diversity
between pairs of classifiers based on a contingency table of correct/incorrect classification.
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Fig. 11 The performance of individual rulesets R4 and R5 vz the combined ruleset DS45 on the testing set

As indicated by Whitaker and Kuncheva (2003), diversity is not a simple concept and in
some situation it might not correlate the performance improvement of combined classifiers,
and to date no “best” measure for diversity has been found. Due to diversity being measured
on the training process, the contingency tables for any pairs of classifiers must be computed
at the validation stage, these methods cannot be directly applied to examine the diversity of
multiple sets of rules. Alternatively we propose an empirical measure called the closeness.
Based on our empirical study, we found that when a ruleset has the highest closeness to the
best ruleset, its combination with the best ruleset can achieve the best performance (Bi 2004).

7 Conclusion

In this paper, we have presented a method built on Rough Set theory for generating multiple
sets of rules, a novel combination approach for combining classification decisions obtained
from multiple sets of rules based on Dempster’s rule of combination, and the comparative
analysis between DS and MV. Various experiments have been carried out on 10 of 20-news-
groups benchmark data. It is observed that in the case of DS, the combination which can
achieve the highest predictive performance is the combination of two sets of rules of which
one is the best and the other is the second best, whereas in the majority voting case, the
best combination is the combination of three rulesets, i.e. the combination of the best, the
second best and the third best rulesets. To analyze the generalization performance of our
method, we have compared the estimated performance of the best individual ruleset and the
best combined rulesets using both DS and MV on the validation set with that on the testing
set, and found that DS has more overfitting than MV.

We should emphasize that the focus of this research is on exploring methods and techniques
which can make use of multiple discovered knowledge and evidence sources for improving
text classification, instead of developing or improving single rough sets-based algorithms.
Our empirical results show that the best combination of rulesets outperforms single sets of
rules, which supports a common idea in artificial intelligence that decision making on the
basis of multiple knowledge is more effective than single knowledge. On the other hand, we
found that the performance of the combined ruleset is directly affected by the performance of
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individual sets of rules, the combination of the best and the second best rulesets outperforms
any one of the single rulesets. This also means that given a data mining algorithm if our rough
sets algorithm is comparable with it, the best combined ruleset using our DS method would
outperform it.
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